# Microgrid Equipment Selection and Control in Buildings





Energy Efficiency & Renewable Energy

Wei Feng, weifeng@lbl.gov Lawrence Berkeley National Laboratory

#### **Project Summary**



#### <u>Timeline</u>:

Start date: June 2011

Planned end date: Dec 2015

**Key Milestones** 

1. UNM Mech Eng Blg.; summer 2012

2. Chinese WebOpt; Dec 2012

3. U.S.-China regional comparison study on DER

technology potential in buildings; mid 2013

Reference Buildings Analysis Set; Fall 2013

4. XingYe HQ Building, Zhuhai, devel.: 2014

#### **Budget**:

Total DOE \$ to Dec 14: \$700K

(\$340K in hand)

Total DOE \$ to Dec 15: \$300K

#### **Key Partners**:

| U of New Mexico              | Tianjin University                     |
|------------------------------|----------------------------------------|
| C3 Energy                    | Tongji University                      |
| PNM<br>(electricity utility) | XingYe Solar                           |
| Santa Fe Com. Col.           | Beijing U. of Const.<br>& Architecture |

#### **Project Goal**:

Using a Software as a Service model provide optimal equipment choice and operating guidance for low energy buildings employing multiple supply and demand-side technologies.

#### **Target Market/Audience**:

Developers of complex commercial buildings and microgrids involving integration of onsite generation, storage, load control, grid services, etc. in the U.S. and China.

### **Purpose and Objectives**



**Problem Statement**: Ultra efficient buildings and microgrids offering low carbon resilient energy services require complex optimization for equipment choice, operations.

#### **Target Market and Audience:**

- 1. Investment & Planning: building designers & owners, visualization developers
- 2. Operations: DER equipment & control system vendors, microgrid operators
- 3. Analysis: policymakers, vendors

Impact of Project: Provide methods and software to operate building microgrids.

- 1. Output: software tools to optimize DER technology selection and operation.
- 2. CA 2050 study shows commercial buildings have large DER technology potential. Our regional study shows DER technologies may reduce CO2 intensity in Chinese commercial buildings by 40%.
  - a. near-term: 4 NM buildings and XingYe building demonstrations
  - b. intermdeiate-term: extend NM buildings and add controls capabilities
  - c. long term: demonstrate DER technologies optimal operation and controls add power quality and grid interaction



### **Approach**



**Approach:** Deploy software tools base on the Distributed Energy Resources Customer Adoption Model (DER-CAM) developed over a decade at LBNL.

The first, a web-based DER-CAM version, WebOpt, finds optimal on-site generation, storage, control, etc., equipment combinations that minimize cost, carbon footprint, or a combination, using either English or Chinese.

The second is a 1-7-day-head optimal control strategy generator, Operations DER-CAM. This is being used at UNM Mech Eng. Blg. & U. of Tianjin Blg. 26, with others in process. The third is an automated WebOpt analysis of multiple buildings to build bottom up estimates of market trends.

**Key Issues**: Need to extend WebOpt to other technologies, developing interfaces to various control systems difficult, need to develop standard protocols for use of operating schedules, e.g. BACnet, licensing slow

**Distinctive Characteristics**: DER-CAM is an analytic model that delivers ultra-fast guaranteed optimal solutions to complex building investment and operations problems.



### **Progress and Accomplishments**



**Lessons Learned**: Interest in microgrids is exploding but changing objectives, challenge of implementing schedules in building control systems is significant (simplified approach needed),

**Accomplishments**: Chinese language interface for WebOpt developed and extensive training conducted in China, ~125 WebOpt users in U.S., ~60 in China, and ~350 worldwide, DER potential study completed and published, Reference Building capability developed (all these suggest rapid deployment possible), energy use of UNM Mech. Eng. Blg. lowered by 30% in 2012 (gains are most significant for complex energy systems)

Market Impact: software subscription in both U.S. and China.

- 1. Conducted trainings in the U.S. and China to use DER-CAM
- 2. Beijing Workshop of DER technologies to engage U.S. manufacturers and Chinese stakeholders in using this tool
- 3. Currently, a few buildings use Webopt for DER technologies selection in the U.S. and China. Implemented UNM ME building real-time control.
- 4. Shenzhen IBR, district level work



## 1. Invest. & Plan.: WebOpt User Statistics





http://building-microgrid.lbl.gov/projects/distributed-energy-resources-web



#### **DER-CAM Inputs & Outputs**







emissions

#### Investment & Planning:

determines optimal equipment combination and operation based on *historic* load data, weather, and tariffs

optimal DER capacities

optimal DER operations schedule

#### Operations:

determines optimal week-ahead scheduling for installed equipment and *forecasted* loads, weather and tariffs



### 2. Operations: UNM Mech. Eng. Blg.



#### objectives:

generate optimized scheduling of cooling equipment with

Operations DER-CAM

- solar thermal collection
- hot water storage
- chilled water storage
- absorption chiller
- deliver daily automated control instructions

establish SaaS approach applicable to LEB







### Univ. of New Mexico Mech. Eng. Blg. Results



- V. efficient building (40% below typical) saving ≈30% energy costs summer 2012
- Big gains: storage charge-discharge, reduced auxiliary loads
   & losses
- Tariffs matter! Gains from load shifting harder to capture
- Complex systems benefit more from optimization
- Weather forecasts mediocre in 2012, better now
- Setting up the interaction is non-trivial, need for standard
- Paybacks still long because of low energy bills
- Trials sponsored by Public Service New Mexico starting up

#### **PNM Project: Customer Sites**











- application of DER-CAM four diverse NM buildings
- demonstrate benefits
- demonstrate advantages of Software-as-a-Service model
- com. with diverse EMCSs
- train students in a fast-growing engineering area
- develop business model of a third-party optimizer



### Demonstrations at Tianjin U. Building 26 & XingYe HQ



- Background:
  - Blg. 26 interesting because of the microgrid lab.
  - Possibility of direct control using wireless system under development
  - Prototype direct control demonstration
- Modeling Issues:
  - Heating is not sub-metered → an E Wing E+ model has been developed
  - Coal-fired district heating is a main CO<sub>2</sub> emission source
  - Wireless only control
- XinYe HQ
  - True SaaS control, hopefully with a U.S. controls vendor
  - Building has many exotic technologies, electro-chromatic window experiment



# 3. Analysis: U.S and China building DER regional study



- Purpose: A regional comparison of U.S. and Chinese buildings' potential for adopting distributed energy resources
- One commercial building in China (mall) and the U.S. (office)
- 11 cities in China and 16 cities in the U.S.
- Upcoming in Energy and Buildings: Gonçalo Mendes, et al http://authors.elsevier.com/sd/article/S0378778814002679
- Analysis is much easier with Reference Building capability







### Results – commercial buildings, cost optimization





1, U.S. office energy cost savings by floor space

□ Do-Nothing □ Optimal DER

3, U.S. office CO2 emission reduction by floor space



- 2, Chinese mall energy cost savings by floor space
- 4, Chinese mall CO2 emission reduction by floor space

**ENERGY** 

Energy Efficiency & Renewable Energy

### **Project Integration and Collaboration**



**Project Integration**: Reference Building capability developed for C3 Energy, and collaboration with XingYe on development of its demonstration building in Zhuhai.

#### Partners, Subcontractors, and Collaborators:

University of New Mexico, working together under PNM project Tianjin University, Blg. 26 demonstration, Wuhan development, and possible collaboration on its new campus buildings, notably the library

**Communications**: CERC reviews, Energy & Buildings article, ACEEE conference paper, graduate student thesis, Shenzhen IBR



#### **Next Steps and Future Plans**



#### **Next Steps and Future Plans:**

- The UNM Mech. Eng. Blg. Demonstration will be extended to 4
  additional buildings, the first two should be functional this summer.
- 2. The XingYe HQ building will be partially designed with the assistance of WebOpt, and it will be controlled by Operations DER-CAM. Seeking a U.S. controls vendor partner.
- 3. Working with UNM to standardize data exchange.
- 4. Active shading demonstration will be a first experimental use of DER-CAM controlling the window shading Berkeley Lab's 71T Windows Lab.



#### **Team members**



- U.S.: Chris Marnay, Nan Zhou, Michael Stadler, Wei Feng, Gonzalo Mendes, Gonzalo Cardoso, Nicholas DeForest, Shi Wang, He Gang?
- China: Neng Zhu (Tianjin), Hongwei Tan (Tongji), Duo Luo (Xingye),
   Jia Wang (BACU)

#### Websites:

china.lbl.gov building-microgrid.lbl.gov

#### Contacts:

Project Management: NZhou@lbl.gov

Microgrids in China: ChrisMarnay@lbl.gov and WeiFeng@lbl.gov

DER-CAM and Microgrids in the U.S.: <a href="Mstadler@lbl.gov">Mstadler@lbl.gov</a>





# REFERENCE SLIDES



### **Project Budget**



**Project Budget**: Overall full project cycle budget should be 1 M\$.

Variances: Early budget erratic, but consistent now.

Cost to Date: \$360K of \$700K granted.

Additional Funding: \$85K from PSN, in-kind from industrial partner, funded

visitors from China & Europe, shared travel with other China projects.

| Budget History |                |       |              |       |                   |  |  |
|----------------|----------------|-------|--------------|-------|-------------------|--|--|
|                | FY2013<br>ast) |       | 014<br>rent) |       | Dec 2015<br>nned) |  |  |
| DOE            | Cost-share     | DOE   | Cost-share   | DOE   | Cost-share        |  |  |
| 400            | 100            | 237.5 | 200          | 362.5 | 250               |  |  |



### **Project Plan and Schedule**



- At least 2 of the 4 buildings shown on slide 10 are being modeled, and links to their EMC's will be established
- They will be controlled for the summer of 2015
- A U.S. controls vendor will be recruited for the XingYe HQ project
- Electrochromic window DER-CAM capability will be developed in lab environment
- The XingYe HQ building will be controlled upon its completion

| Project Schedule                                          |              |                                            |              |              |              |              |              |              |              |              |              |              |
|-----------------------------------------------------------|--------------|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Project Start: Q4 FY12                                    |              | Completed Work                             |              |              |              |              |              |              |              |              |              |              |
| Projected End: Q1 2016                                    |              | Active Task (in progress work)             |              |              |              |              |              |              |              |              |              |              |
|                                                           | •            | Milestone/Deliverable (Originally Planned) |              |              |              |              |              |              |              |              |              |              |
|                                                           | •            | Milestone/Deliverable (Actual)             |              |              |              |              |              |              |              |              |              |              |
|                                                           |              | FY2013 FY2014 FY2                          |              |              |              |              | 2015         |              |              |              |              |              |
| Task                                                      | Q1 (Oct-Dec) | Q2 (Jan-Mar)                               | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Past Work                                                 |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q1FY13: complete Chinese language WebOpt                  | •            |                                            |              |              |              |              |              |              |              |              |              |              |
| Q2FY13: complete UNM.M.E. demo. & publish results         |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q2FY13: US-China tech. potential comparison               |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q4FY13: Blg. 26 E+ model built                            |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q4FY13: Reference Building analytic set completed         |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q2FY14: sign-up of 4 candidate NM buildings               |              |                                            |              |              |              |              | <u> </u>     |              |              |              |              |              |
| Current/Future Work                                       |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q3FY14: establish EMCS vendor for XingYe Blg.             |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q4FY14: complete modeling of EC window experiment         |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q4FY14: establish DER-CAM & cntrol. interface ≥2 NM blgs. |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q3FY14: complete EMCS API & install for XingYe Blg.       |              |                                            |              |              |              |              |              |              |              |              |              |              |
| Q4FY15: control ≥2 NM blgs.                               |              |                                            |              |              |              |              |              |              |              |              |              |              |



# A Project of CERC-BEE (US-China Clean Energy Research Center Building Energy Efficiency Consortium)

China Innovation for Widespread Adoption of Very Low Energy Buildings Through Partnerships and Real World Impact Pioneering U.S.



























U.S. Research Leads

**U.S. Industrial Partners** (Funding +40% Annual Average Growth Rate)

#### Research Strategy → Huge Impact:

- U.S./China construction market ~ 2B m2
- CO2 savings ~ 100Mt/year by 2025

**ABOUT:** CERC-BEE is a five year, \$50M program created by the U.S. Department of Energy and Chinese Ministry of Science and Technology.

**Technologies, Software** 

**New Patent Applications**  **Demonstration Buildings**, Commercial Impact, **Tools and Guidebooks** 

**Wide Adoption Very** Low Energy Buildings

**Market Policy** 

**R&D TEAMS:** U.S. national laboratories, and U.S. and Chinese universities, and research institutes team up with industry partners to accelerate innovation and deployment.

#### SELECTED RESEARCH OUTCOMES:

- Launched eight new products and developed two software tools (e.g. Cloud tool for microgrids, 40 new users from China)
- Won R&D Top 100 Award for GSHP by Climate Master
- Exceeded IP goals: ~ 25 patents filed, 4 approved; inventions disclosed and more in process (e.g. sprayable liquid flashing, cool roof materials)
- Developed 20 standards (e.g. LBNL involved in new Chinese commercial building code revision)
- Published 135 Chinese and 54+ US academic research papers



Website: cercbee.lbl.gov

